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Summary

Background: Chemotaxis is the process by which or-
ganisms migrate toward nutrients and favorable environ-
ments and away from toxins and unfavorable environ-
ments. In many species of bacteria, this occurs when
extracellular signals are detected by transmembrane
receptors and relayed to flagellar motors, which control
the cell’s swimming behavior.

Results: We used a molecularly detailed reaction-kinet-
ics model of the chemotaxis pathway in Escherichia coli
coupled to a graphical display based on known swim-
ming parameters to simulate the responses of bacteria
to 2D gradients of attractants. The program gives the
correct phenotype of over 60 mutants in which chemo-
taxis-pathway components are deleted or overex-
pressed and accurately reproduces the responses to
pulses and step increases of attractant. In order to match
the known sensitivity of bacteria to low concentrations
of attractant, we had to introduce a set of “infectivity” re-
actions based on cooperative interactions between
neighboring chemotaxis receptors in the membrane. In
order to match the impulse response to a brief stimulus
and to achieve an effective accumulation in a gradient,
we also had to increase the activities of the adaptational
enzymes CheR and CheB at least an order of magnitude
greater than published values. Our simulations reveal
that cells develop characteristic levels of receptor meth-
ylation and swimming behavior at different positions
along a gradient. They also predict a distinctive “vol-
cano” profile in some gradients, with peaks of cell den-
sity at intermediate concentrations of attractant.
Conclusions: Our results display the potential use of
computer-based bacteria as experimental objects for
exploring subtleties of chemotactic behavior.

Introduction

The intracellular reactions by which coliform bacteria
detect and respond to attractants and repellents form
the basis of probably the simplest known behavioral
response (Figure 1) [1, 2]. A handful of receptor species
in the membrane detect environmental signals and relay
this information to a single intracellular kinase, CheA,
which changes its rate of generation of phosphoryl
groups. Phosphoryl groups are transferred from the
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kinase to a small highly mobile protein, CheY, which
then diffuses to the flagellar motors. The motors change
their direction of rotation depending on the local con-
centration of phosphorylated CheY (CheYp) and thereby
modify the pattern of swimming of the bacterium. Two
other enzymes mediate adaptation—a simple form of
cellular “memory”: One enzyme (CheR) adds methyl
groups to the receptors and the other (CheB) removes
them. All of the proteins in this pathway, from input to
output, have been identified, purified, and studied
in vitro, and we have atomic level structures for all of
them, in whole or in part. Systematic mutagenesis con-
firms that we have essentially all the players in the path-
way and also provides a rich database of phenotypes.
Sophisticated optical methods allow the activities and
concentrations of certain signaling components to be
measured, even in single cells. Several computer models
of the signaling process have been developed and show
broad agreement with experimental data (see http://
www.pdn.cam.ac.uk/comp-cell/Models.html).

The sensitivity of the chemotactic response, particu-
larly to aspartate, has been the subject of great interest.
E. coli bacteria can detect a change in occupancy of
their aspartate receptors (Tar) of as little as 0.1%-
0.2%, corresponding to the binding of a few molecules
per cell [3]. However, predictions based on the canoni-
cal signaling cascade and embodied in early computer
models consistently failed to reproduce anything like
this amplification (also known as “gain”)—in most
cases, there is a missing amplification of about 30-fold
[4, 5]. Present evidence suggests that this arises from
the neighboring receptors’ cooperative interactions,
facilitated by the tendency of receptors and their associ-
ated signaling molecules to cluster on the bacterial
surface [6]. Although the mechanistic details remain
a matter of debate, it is now generally accepted that
influences spreading from occupied receptors to neigh-
boring unoccupied receptors substantially increase the
size of the downstream signal [7].

Biochemical changes in the chemotaxis pathway are
context specific and make sense only when one knows
the chemical environment of the bacterium. A complete
description therefore requires one to relate temporal
changes in the concentrations of signaling molecules
to spatial changes in attractants and repellents. With
this in mind, we embedded a detailed, quantitative sim-
ulation of the temporal changes in chemotaxis biochem-
ical reactions within a graphical representation of swim-
ming bacteria. In the resulting program, individual
bacteria are displayed running (swimming smoothly in
an approximately constant direction) and tumbling
(with little change in position) within a 2D terrain, with
more or less accurate detail, depending on the magnifi-
cation scale. The terrain includes a user-specified gradi-
ent of attractant (in this case aspartate) sampled by the
bacterium at regular intervals (typically four times per s).
For the simulations described in this paper, a single
attractant—aspartate—and only one receptor type, Tar,
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Figure 1. The E. coli Chemotaxis Pathway

A schematic of the cell shows the signaling proteins (letters R, B, W,
A, Y, and Z represent the proteins CheR, CheB, CheW, CheA, CheY,
and CheZ) that carry signals from transmembrane receptors (left) to
flagellar motors (right). See recent reviews by [2], [7], and [26].

was used. Instantaneous changes in extracellular aspar-
tate due to the motion of the bacterium result in rapid
shifts in the concentrations of phosphorylated protein
species and slower modulation of the levels of protein
methylation. Random number generators in the program
then convert the instantaneous concentration of the in-
tracellular signal to a probability of tumbling. Each tum-
ble then produces a random change in swimming direc-
tion based on experimentally observed parameters [8].

The simulated bacterium thus pursues a biased ran-
dom walk over the computer screen in a manner respon-
sive to the local concentrations of aspartate. At any in-
stant of time, one can read out the concentrations of
extracellular aspartate and intracellular signaling mole-
cules in an individual bacterium as well as other param-
eters such as the rotational bias of the flagellar motor.
The same approach can be applied to populations of
bacteria, revealing their changing distribution with
time. Evidently, these simulations have many obvious
differences to real bacteria, as we discuss below. Never-
theless, the virtual bacteria reproduce a broad range of
experimental data relating to the sensitivity and rates
of response and adaptation, for both wild-type cells
and chemotactic mutants. Because their internal bio-
chemistry is firmly based on decades of experimental
data, we believe it is legitimate to treat these represen-
tations as experimental objects in their own right. The
advantage is that we can expose cells of any specified
genotype to precisely defined stable gradients of any
required shape (including those that are difficult, or im-
possible, to achieve in the real world) and observe their
behavioral responses.

Results

Two graphical representations, termed E. solo and
E. pluribus, were prepared for this study. Both are based
on a compact version of an existing program BCT (Bac-
terial ChemoTaxis) (see Experimental Procedures). Inthe
E. solo program, one or a few bacteria are depicted at
relatively high magnification, with each cell having four
independent flagella. Here, the environment contains

a uniform concentration of aspartate, which can be ad-
justed in real time by the user. This program allows the
analysis of such details as the frequency of tumbles
and angles of turns during a tumble, adaptation times,
and the small changes in direction during a run due to
thermal motion. In the program called E. pluribus, bacte-
ria are represented at lower magnification and without
flagella. In this case, multiple bacteria (of the same or
different genotype) are allowed to swim within a defined
arena, rectangular or circular, containing a fixed gradient
of aspartate of specified slope. Bacteria that happen to
swim into the arena boundaries either bounce back
into the arena (reflective boundary) or pass through
and reappear on the opposite side of the arena (toroidal
boundary).

Figure 2 depicts a series of snapshots of a single bac-
terium taken from the E. solo program at roughly 1 s in-
tervals. The bacterium is seen swimming across the
computer screen with occasional tumbles. The four fla-
gella are either coordinated into a single sinusoidal bun-
dle during a run or splayed apart during a tumble. Exper-
imental records of swimming bacteria [9] are shown in
Figures 3A-3C, where they are compared to the loci of
individual E. solo from the simulation (Figures 3D-3F).
Tracks include both wild-type bacteria and a mutant
that does not tumble. In the simulated case (Figure 3F),
the mutant is one in which all of the signal transduction
proteins were removed except CheA—these cells fail to
make the phosphorylated protein CheYp and therefore
display exclusively smooth swimming. Figures 3G and
3H provides a comparison of the durations of runs and
tumbles measured in tethered cells and taken from the
E. solo simulation (with input data taken from the exper-
imental distributions).

Many other mutants in the chemotaxis pathway have
been isolated and characterized in over four decades
of research. These include mutants in which the signal
transduction genes have been deleted, singly or in com-
bination, mutants in which genes are expressed at
higher than normal levels, usually through the introduc-
tion of a plasmid, and mutants in which all of the signal
transduction genes have been removed by deletion (a
“gutted” strain) and then selected genes replaced.
Each mutant exhibits a characteristic defect in its che-
motactic ability. Absence of the phosphatase CheZ,
for example, results in the accumulation of CheYp and
thus leads to tumbly behavior and a prolonged response
to transient stimuli. A smooth-swimming phenotype is
exhibited not only by mutants lacking the adaptor
protein CheW but also by those in which it is overex-
pressed, a pattern thought to reflect the optimum com-
binations of proteins for building the receptor complex
[10]. These and other patterns are reproduced by the
BCT program, which gives qualitative agreement with
the phenotypes of 63 out of 65 mutants (Table 1).
Whether the few remaining discrepancies on this list
are significant remains to be explored.

In response to a step increase in aspartate concentra-
tion, the swimming performance of E. solo changes
abruptly. The counterclockwise swimming bias rises
rapidly from around 0.85 [9, 11] to a value closer to 1.0,
indicating a suppression of tumbles. Note that this un-
stimulated bias is a population average with the individ-
ual bias varying from cell to cell [12], although greater
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Figure 2. Simulated Swimming Bacteria

Screen shots of a simulated E. coli bacterium generated by the E. solo program, in which the bacterium is running and tumbling in a uniform
background of 0.1 uM aspartate. The bacterium has four flagella, which either combine into a regular bundle in a run or break apart individually
during tumbles. The local concentration of aspartate is given on the left-hand scale; steps in the lower trace represent tumble events. The
dimensions of the terrain are 110 x 80 um, and the snapshots are taken at 1 s intervals.

sensitivity is achieved with biases closer to 0.5. The bias
then slowly falls over a period of seconds or minutes be-
cause of the adaptation of the system. Analysis of the
E. solo signaling intermediates reveals a progressive in-
crease in the level of receptor methylation as adaptation
proceeds (data not shown). If aspartate is suddenly re-
moved from a fully adapted E. solo, the bias rapidly falls
and is followed by a slow return of the bias and the meth-
ylation level to their default unstimulated values.

A similar but more rapid sequence of events is seen
when E. solo is exposed to a rapid pulse of aspartate
(Figure 4). The magnitude of the attractant response
(the peak value reached) varies monotonically with the
aspartate concentration encountered, within its effec-
tive range, and depends on the sensitivity or gain of
the system, already mentioned. In order to achieve a
suitable sensitivity in the BCT program (which does
not represent individual receptor molecules), we intro-
duced an “infectivity” factor as an input to the program.
This amplifies the effect of aspartate binding and
thereby approximates the source of gain in the system.
The basis of the infectivity calculation was presented
previously [13]. Each inactive (occupied) receptor com-
plex causes a number of active neighboring complexes
to become inactive depending on the infectivity and
present level of occupancy. In Figure 4, we show simu-
lated step and impulse responses with an infectivity of
35, based on the enhancement in sensitivity exhibited
by wild-type cells over cheRcheB mutants [5]. With an
infectivity of this magnitude and pulses of aspartate
that reach the experimentally recorded maximal bias,

we found it necessary to increase the activities of CheR
and CheB—the two enzymes responsible for adapta-
tion—15-fold to match the time courses of the two
responses.

Infectivity and rate of adaptation both influence the
ability of simulated bacteria to accumulate in a gradient.
This was examined with the E. pluribus simulation of
cells in aradial gradient. In an exponential aspartate gra-
dient, 10~5 M at the center and 10~° M on the perimeter,
default E. pluribus cells (which have an infectivity of 1)
show very little tendency to accumulate (Figure 5A).
Cells with an infectivity of 35 in the same gradient
show a peak of density at approximately 6 x 1078 M
(Figure 5B). Note that this peak of cell density does not
coincide with the maximum aspartate concentration. A
15-fold increase in the activities of adaptational en-
zymes CheR and CheB caused the distribution to shift
closer to the center of the gradient (Figure 5C) with a sig-
nificant proportion of cells escaping the influence of the
gradient. The tightest concentration of cells was seen
when both CheR and CheB and infectivity were elevated
(Figure 5D).

Screen shots of E. pluribus cells in a radial gradient
taken after they have reached equilibrium are shown in
Figure 6. In this case, the strain—with an increased
CheR and CheB activity (15-fold}—was exposed to dif-
ferent gradients of aspartate. With a high peak concen-
tration and steep gradient, the cells displayed a flattened
central plateau (Figure 6B), which became sharper when
the peak concentration was decreased (Figure 6C). As
the gradient became less steep and the absolute
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Figure 3. Swimming Characteristics of Real
and Simulated Bacteria

Loci of bacteria recorded experimentally or
generated by computer.

(A-C) Experimental data reproduced from
Berg and Brown [9] (2D projection of 3D
track).

(D-F) Simulations based on the E. solo pro-
gram with graphical interface employing

closely similar swimming speeds, spatial di-
mensions, and recording times.

(G) Distributions of lengths of “runs” (CCW)
and “tumbles” (CW) obtained experimentally
for wild-type cells tethered to a microscope
slide by antibody. Reproduced from Mor-
ton-Firth [27].

(H) Equivalent distributions generated by
computer.

o

ccw
0.3 1

0.2+
0.05 0.1

fraction of intervals

rotation interval (s)

X

ccw
0.3
0.10

0.2

0.05
0.1 -

0 0
0 5 10
rotation interval (s)

fraction of intervals

concentrations became lower, increasing numbers of
cells escaped its influence (Figure 6D).

In some radial gradients, especially those with high
maximum attractant concentration, the cell population
developed a distinctive “volcano” shape at steady state
(Figure 7A and Figure S1). On closer examination, it
appeared that under these conditions, the peak of cell
density coincided with the location at which cells had
the greatest probability of tumbling. Analysis of the cells
in this situation shows that, in the central crater of the
volcano, cells had a bias close to 1.0 and spent most
of their time in a run. Systematic changes in methylation
level of receptors were also noted from the lowest
(default) level at the gradient perimeter to an elevated
level closer to the center (Figure 7B).

Discussion

In this study, we embedded an established ordinary-dif-
ferential equation model of the signaling reactions of
the E. coli chemotaxis pathway into graphical displays
of swimming bacteria. The resulting program permitted
us to test the responses of the cells to their environment

0 5 10 15 0

cw

and, specifically, to examine how cells with different
internal functionality behave in various gradients of
attractants.

As in any computational analysis, we had to make
simplifications, and many features of the real biological
system were omitted. Thus, we encoded only the cas-
cade of reactions between the chemotactic receptors
and the flagellar motor and ignored all other aspects of
cell chemistry. We did not include crosstalk with other
signaling pathways, such as the PTS system for glu-
cose, influences due to metabolism, or slower effects
due to cell division or protein synthesis. Even the che-
motaxis pathway itself was represented in a highly
reduced and stripped-down format: Just one type of
receptor was present (instead of five), and adaptation
was achieved by addition of a single methyl group per
receptor dimer (instead of eight). In contrast to other
programs we have developed such as StochSim [14]
and Smoldyn [15], the BCT program does not represent
individual molecules explicitly nor does it specify where
they are in the cell, whether they diffuse, and, if so, when
they diffuse. Flagella and their associated motors were
not modeled with any detail in our program (the display
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Table 1. Chemotaxis Mutants®

Deletion Gutted Overexpression Mixed

T Gutted (g) ™ TB*™
R~ Y (@ R™ Ty
B Y™ () B* Tz
w- Y (@ W+ B~W*
A \anaad (g) At B~ Z**
Y- zt (@ Y+ B*Z~
z- vzt (9) Z+ WHzZ~
Tz Y++Zt (g) T++W++ A++Z—
R B~ Y+++Zt (g) B++y++ T—B++Y++
B Z~ yHH+Zt @ WHAH T Wz~
WA~ T*Y* (g) YHZH THW-Z~
Wz~ A*Y* (9) R B™W**
A Z" T*A*Y* (9) R™B7Y**
Y Z~ W*A*Y* (g)
TW'Z™  TW'A'Y*(g)
B"W A~ T*Y*Z' (g)
B7Y Z" A*Y*Z' (g)
W A Z" T*A*Y*Z! (g)

w+A+Y+Zt (g)

T+W+ A+Y+Zt (g)

T7Y™ (9)

W*Y*Z' (g)

T+W+Y+Zt (g)

Gene products are either deleted (-), present at wild-type levels (+),
increasingly overexpressed (++, +++, ++++), or present in trace
amounts (t). The symbol (g) indicates expression in a gutted strain,
in which all of the chemotaxis genes are deleted. BCT is able to
reproduce the phenotypes of all mutants except those that are
shaded. This list includes a set of gutted strains newly isolated be-
cause of differences they showed to the results of BCT simulations:
The program in this case served to identify a flaw in the original
genetic assignments [28].

2Genotypes of mutants whose phenotypes have been reported in
the literature.

of flagella in E. solo simply imitates the appearance of
flagella seen under a microscope and does not embody
biophysical parameters). The probability of a run or tum-
ble of each bacterium was calculated by a simple for-
mula from the instantaneous concentration of CheYp.
Gradients and swimming patterns were all rendered
in 2D instead of the more natural 3D. The positions of
bacteria were represented internally as dimensionless
points, and no interactions, physical or otherwise, be-
tween different cells were considered.

Despite these approximations, and within the pre-
scribed limits, our simulated bacteria closely resemble
real cells. The durations of their runs and tumbles have
the same distributions as those recorded for living cells
and show the same angles of turn during a tumble. Their
random drift during a run is comparable in magnitude to
the effects of thermal motion seen in real cells. Steady-
state swimming behavior of a large number of chemo-
tactic mutants was qualitatively correct (Table 1), as
were changes in run length caused by the attractant
aspartate. Quantitative agreement was obtained after
adjustment of gain and adaptation rate as described in
the text. This applied to the response to a transient as-
partate pulse, which showed the expected peak size
and overshoot, as well as to the time course of adapta-
tion (Figure 4). Once changes to the gain and adaptation
time course had been installed, populations of simu-
lated bacteria (E. pluribus simulation) effectively accu-
mulated in simulated gradients.

In this work, because the BCT program represents re-
ceptors as concentrations rather than as individual mol-
ecules, we approximated the effects of receptor cooper-
ation by including an “infectivity” term in our program. At
low concentrations of attractant, this simply multiplies
the receptor occupancy by a constant factor. At higher
concentrations, the effect of aspartate plateaus due to
overlap between neighboring receptors (the “raindrops
effect” [13]). Increased infectivity had a marked effect
on the rapid impulse response of bacteria and caused
the peak bias to increase. An infectivity of approximately
35 was sufficient for generating a gain close to that seen
experimentally. Increased infectivity also affected the
distribution of bacteria in a gradient and moved the
threshold accumulation to lower concentrations (com-
pare Figures 5A and 5B).

We also found it necessary to modify the rate of adap-
tation. Experimental records of the impulse response
show a biphasic time course, in which the bias first rises
rapidly then falls transiently below the resting bias be-
fore returning to its initial state (see Figure 4C). The sec-
ond phase, or “overshoot,” was almost absent from the
simulated transient response of default cells, even with
increased gain (Figure 4D). However, we found that we
were able to achieve an overshoot of the desired magni-
tude by increasing the kinetic rates of CheR and CheB,
the two enzymes responsible for adaptation, 10- to 20-
fold based on simulations of the step response (Fig-
ure 4A). Published estimates for the rate of demethyla-
tion of receptors are 0.4 per s for phosphorylated
CheB [16] and an approximately 70-fold-lower rate for
unphosphorylated CheB [17]. Experimental values for
the rate of CheR methylation range from 2 x 10~* per
s to over 5 x 1072 per s (see http://www.pdn.cam.ac.
uk/comp-cell/Exp_data/edmeth.htm). In the present
version of BCT, a higher rate of CheR (2.7 x 1072 per
s) is selected to produce a resting bias of 0.85 [9, 11].
As described in this paper, we found it necessary to in-
crease the kinetic rates of CheR and CheB even further
to achieve the impulse overshoot (Figure 4D) and effec-
tive accumulation in a gradient (Figure 5D). Note that all
estimated values of catalytic rates come from in vitro
assays with membrane preparations, and these rates
may be significantly different from in vivo rates. CheR
and CheB are localized to the compact chemoreceptor
cluster so their activities may be strongly affected by
their enhanced local concentration and the close prox-
imity of other proteins. In fact, it can be argued that
by titrating the adaptation rates against other parame-
ters of the pathway, we are likely to arrive at more real-
istic values. When a simulation such as this becomes
sufficiently data-rich, it provides a test of consistency
between multiple experimental measurements, which
are often made at disparate times and in different
laboratories.

The increased activities of CheR and CheB had an in-
fluence on not only the characteristics of the impulse
response but also the ability of the cells to accumulate
in a gradient (see Figure 5). In fact, a link between these
two aspects of the E. coli chemotactic response was
noted previously. In theoretical work by Clark and Grant
[18], the authors showed that the independent criteria
of movement up a chemotactic gradient and accumula-
tion at peaks of chemoattractant are in conflict. They
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showed that composite optimization yields a response
function that closely resembles the experimentally de-
termined impulse response function, with a bias over-
shoot of equal magnitude. Their work clarifies why
increasing the rate of adaptation not only produces a
more accurate impulse response but also results in a
superior accumulation at the peak of a gradient.

The experimental observation of bacterial chemotac-
tic responses is technically difficult. Gradients of freely
diffusing soluble molecules are inherently labile and lia-
ble to change over the periods of time needed for ob-
serving bacterial motility. Techniques that have been
used in the past employed such devices as swarm
plates and pipettes introduced into the bacterial culture.
Bacteria have also been observed swimming in defined
gradients established in glycerol solutions [19] or in
microchannels between two stirred chambers [20].

aspartate concentration (M)

107

Recently, microfluidic technology has been employed
to create gradients of attractants and repellents, and
the effects on free-swimming bacteria have been ob-
served [21, 22]. A great deal has been learned from these
experimental methods, but they all have their limitations.
By comparison, our computer-based analyses are rapid
and convenient. We can apply gradients of any shape
and perfect stability and measure bacterial responses,
both behavioral as well as biochemical, to these gradi-
ents, with any desired accuracy and sensitivity. Because
our simulated bacteria contain a replica of the signal
transduction pathway found in real bacteria and, within
the limits already noted, perform in a closely similar
fashion, we feel justified in treating them as experimen-
tal objects in their own right. They serve as surrogate
bacteria in tests that would be difficult, if notimpossible,
to perform experimentally.

Figure 5. Distribution of E. pluribus in a Radial
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One thousand simulated bacteria were
placed at random in a circular arena of radius
900 pm. The arena contained an exponential
gradient of aspartate, from 10~5Min the cen-
ter to 10~° M on the perimeter. After 100 s so
that a steady-state distribution could be
reached, the positions of bacteria were re-
corded at 2 s intervals for the next 1000 s
and pooled. Histograms show the average
density of bacteria in 30 radial sectors.
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(A) Default bacteria with infectivity of 1.
(B) Default bacteria with infectivity of 35.
10° 10° (C) Adaptation-enhanced strain with the cata-

-5 6 -7 -8 -9 -5 -6
64510 10 10 . 19. 10 52210 10
A 1 kg, infectivity 1 B
0.2
0.15
0.1
0.05
€
5 0
= 0 300 600 900 0 300
.“;n‘
&
° 105 10 107 10®  10° 105 10°¢
= 0. 0.8
3 22 (o] 15 kg g, infectivity 1 D

0.6

0.4

0.2

0
900 0
radial position (um)

300

600

300

15 kg g, infectivity 35

lytic activities of CheR and CheB increased
15-fold greater than rates used in the unmod-
ified BCT program and infectivity of 1.

(D) Same as (C) but with infectivity of 35.
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Figure 6. Accumulation in Different Gradients

The positions of 1000 E. pluribus cells were recorded after 1200 s.
In every case, a strain with the catalytic rates of CheR and CheB
increased 15-fold, and infectivity of 35 was used.

(A) No gradient.

(B) Exponential gradient from 10~% M aspartate in the center to 1078
M on the perimeter.

(C) Gradient from 10"°*M to 107° M.

(D) Gradient from 10"* M to 107" M.

To illustrate the superior analytical possibilities inher-
ent in a computer-based approach, we measured the
distribution of bias and level of methylation in popula-
tions of cells. This revealed systematic changes, which
would have been difficult to measure experimentally,
at different points along a gradient. The value of such
an analysis was highlighted in the case of the distinctive
“volcano” distribution we encountered in certain gradi-
ents. We saw that cells in steep radial gradients of at-
tractant accumulate at highest density in a ring situated
at intermediate concentrations and show a lower pla-
teau density closer to the center (see Figure 7 and Figure
S1). This is in accordance with the observation made by
Julius Adler in 1973 of the behavior of bacteria in a cap-
illary assay, in which an attractant diffuses from the
mouth of the capillary and creates a gradient: “A cloud
of bacteria does form away from the mouth of the capil-
lary whenever the attractant is present at concentrations
that are effective for chemotaxis” [23]. On further analy-
sis, we found that the highest incidence of tumbling
(lowest bias) coincided with the rim of the volcano (posi-
tion of highest cell density), whereas methylation levels
reached a steady maximum value in the volcano crater
(Figure 7B). Our interpretation is that cells attracted to
the gradient swim across the region of highest concen-
tration at its center until they reach a sufficiently low
concentration to cause a tumble. At this point (corre-
sponding to the peak of density), they change direction
randomly until by chance they set off again across the
peak region. Evidently in the future we will be able to an-
alyze other more complex situations. These will include
investigations of individuality in the population [12, 24]
and the response to mixed gradients of different shapes.
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Figure 7. Depiction and Analysis of the “Volcano Effect”

(A) A screen shot of 1000 E. pluribus cells distributed in a radial gra-
dient of aspartate (decreasing exponentially from 105 M in the cen-
ter to 10~° M at the perimeter) and allowed to come to a dynamic
equilibrium. The radius of the gradient was reduced to 200 um so
that individual cells could be displayed to scale. Cells undergoing
a tumble are shown in black; cells in a run are in gray. Notice the
ring of tumbling cells.

(B) The same simulation depicted in (A) was averaged over 20 min so
that average values could be calculated. Normalized cell density is
represented in blue, rotational bias is in green, and methylation level
is in red. In each case, values were summed within radial segments.

Experimental Procedures

The BCT Program

Early versions of the BCT program (Bacterial ChemoTaxis) are de-
scribed in previous publications [10, 25]. The current version is avail-
able for download from our web site (http://www.pdn.cam.ac.uk/
comp-cell/BCT.html). In brief, the program models the cascade of
protein-based reactions between the binding of aspartate to trans-
membrane chemotaxis receptors (the input) and the rotational
switching of flagellar motors (the output) as a series of about 90
ordinary differential equations. These include binding reactions
(such as between an attractant molecule and the receptor or be-
tween the receptor and CheA) and catalytic reactions (such as phos-
phorylation of CheA, methylation of the receptor, and the like). On
initiation, the program performs a set of “prebind” reactions in which
receptors, CheW, and CheA associate to form a functional ternary
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complex [10]. Subsequent simulation cycles then employ this
assembled complex so that phosphorylation and other signaling
reactions can be performed.

Experimental Data

Rates and concentrations used in the BCT program are based on
quantitative data reported in the large published literature. Parame-
ter values (seven concentrations and 14 independent rate constants)
and their sources are listed as part of the program and are available
from http://www.pdn.cam.ac.uk/compcell/Rates.html (see Tables
S1 and S2 in the Supplemental Data available with this article online
for protein concentrations and kinetic data used in this work). In
a few cases, we have found it necessary to adjust these values:
The binding affinities of CheW to the serine receptor Tsr and CheA
are larger than reported values so that overproduction mutants are
faithfully reproduced [10]; adjustment of the catalytic rates of
CheR and CheB are discussed in this paper.

Program Input and Output

Inputs to the BCT program include the copy number per cell of each
of seven chemotaxis proteins and the extracellular concentration of
aspartate. The output comprises a list of concentrations of 38 signal-
ing species; this list is updated every 20 ms. The program also uses
the concentration of CheYp to calculate the swimming bias, defined
as the fraction of time that a cell spends in smooth swimming
(caused by counterclockwise rotation of the flagellar motors). For
any given (average) run duration, the bias then determines the prob-
ability that an individual cell will undergo a tumble in the next time
step. We also incorporated a small random change in direction dur-
ing a run (called a “shimmy”) to simulate thermal drift. This was
adjusted so that a correlation length of about 10 um could be pro-
duced, as observed experimentally with swimming cells [9].

Supplemental Data

Supplemental Data include two tables and can be found with this
article online at http://www.current-biology.com/cgi/content/full/
17/1/12/DC1/.
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